[] Find functions
$$f$$
 and g such that $(f \circ g)(x) = \sqrt[3]{x^2 - 4}$.

(NOTE: Neither f nor g should be the function x.)

$$f(x) = \sqrt{2}\sqrt{\times}$$

$$g(x) = X^2 - 4$$

[] The graph of g is shown on the right. Sketch the graph of g^{-1} on the same axes.

$$(0,3) \longrightarrow (3,0)$$

 $(3,2) \longrightarrow (2,3)$
 $(4,1) \longrightarrow (1,4)$

[] If
$$f(x) = x^2 + 1$$
 and $g(x) = x - 4$, find $(\frac{f}{g})(-1) - g(3)$.

$$\frac{f(-1)}{g(-1)} - g(3) = \frac{2}{-5} - 1 = -\frac{2}{5} + 1 = \frac{2}{5}$$

[] Find a mathematical model for the statement

"z is jointly proportional to the square of x and the cube of y".

Use the graphs of f and g below to evaluate $(g \circ f)(2)$.

ANSWER:

ADDITIONAL QUESTIONS ON THE OTHER SIDE •

[] Let
$$f(x) = \frac{x-3}{x+2}$$
.

[a] Find
$$f^{-1}(x)$$
.

$$y = \frac{x-3}{x+2}$$

$$(\frac{1}{2}) \times = \frac{y-3}{y+2}$$

$$xy+2x=y-3$$
,
 $2x+3=y-xy$

$$2 \times + 3 = y(1 - x)$$
[b] Find the range of f . Write your answer in interval notation.

[] For cylindrical cans of a fixed volume, the height of the can varies inversely with the square of its radius. If a can with a radius of 2 inches is 6 inches tall, find the radius of a can which is 8 inches tall.

$$y = \frac{2x+3}{1-x}$$

$$f^{-1}(x) = \frac{2x+3}{1-x}$$

ANSWER:
$$(-\infty, 1) \cup (1, \infty)$$

ANSWER:

ANSWER:

h=HEIGHT OF CAN (INCHES)

$$r=12ADIUS$$
 OF CAN (INCHES)
 $h=\frac{1}{12}$
 $h=\frac{24}{12}$
 $h=\frac{24}{12}$

The number N of bacteria in a certain food is given by $N(T) = 10T^2 - 20T + 600$, where T is the temperature of the food in [] degrees Celsius. When the food is removed from refrigeration, the temperature of the food is given by T(t) = 3t + 2 degrees Celsius, where t is the time in hours.

[a] Find
$$N(T(t))$$
.

$$N(T(t)) = 10(3t+2)^{2}-20(3t+2)+600$$

$$= 10(9t^{2}+12t+4)-60t-40+600$$

$$= 90t^{2}+120t+40-60t-40+600$$

$$= 90t^{2}+60t+600$$

[b] Interpret the meaning of
$$N(T(t))$$
 in context.

ANSWER:

THE NUMBER OF RACTERIA & HOURS AFTER THE FOOD IS REMOVED FROM REFRIGERATION